

DIGITAL MIXING SYSTEM RIVAGE

V2.2 补充说明书

目录

支持新型HY144-D-SRC卡	3
支持新型HY128-MD卡	4
MIX SEND COPY	6
加载期间的附加选项	7
显示DSP引擎之间的跳线冲突	8
扩展SENDS ON FADER模式功能	
其他CUE监听源	10
镜像运行检查功能	

支持新型HY144-D-SRC卡

此款新型数字I/O卡支持SRC(采样率转换器)模式的4个选项,包括Dante数字音频网络。可处理144个通道,可以安装在HY卡插槽中。

■ SRC模式

备有5个SRC模式选项。可以通过编写固件切换至每个模式选项,固件支持HY144-D-SRC所需模式。

模式名称	SRC	输入通道数	输出通道数
144io	无	144	144
144io Sync SRC	同步SRC ^{*1}	144	144
72io Async SRC	异步SRC ^{*2}	72	72
144i Async SRC	异步SRC ^{*2}	144	0
144o Async SRC	异步SRC ^{*2}	0	144

- *1 **同步SRC**:如果Dante网络时钟以及安装HY144-D-SRC卡的设备时钟以1:2(48 kHz⇔96 kHz或44.1 kHz⇔88.2 kHz)的时钟比例同步,则可以传输不同采样频率,而不损失输入 和输出通道。如果Dante网络以44.1 kHz运行,则18 kHz以上的频率响应将因消除混叠而 轻微退化。
- *2 **异步SRC**:在这种情况下, Dante网络时钟以及安装HY144-D-SRC卡的设备时钟不必相 互同步。可以分别指定采样频率。

注

• 如果使用同步(144io Sync SRC)模式:

如果将Dante网络设备内的卡指定为时钟主机,则以最初同步网络的时间值的2倍运行此卡。 例如:如果此卡在Dante网络中作为从机以48 kHz运行,现在将以基于Dante网络的PTP主时钟生成 的96 kHz运行。

如果打算在安装此卡的设备上将时钟主机设为内置或TWINLANe SLAVE,请使用Dante Controller检查此卡的"启用同步到外置"选项,并将此卡作为Dante网络的主机运行。

•无法在异步SRC模式中将卡指定为时钟主机。指定不同设备作为字时钟主机。

要更改SRC模式,必须使用Dante Firmware Update Manager重写固件。有关更多信息,请参见"HY144-D-SRC固件升级指南"。

用于Dante音频网络的安装和配置卡的步骤,适用于任一HY144-D卡。

SYS	TEM CONFIG								×
1	TWINLANe HY	SLOT3 H	IY SLOT4						
40	HY144-D-SRC	Mode: VERSION: DANTE:		NETWORK	DANTE SETUP		C REFRESH	DEVICE RACK USAG 0 / 24 Used	3E
#1			#9		-	#17		•	
#2		-	#10			#18			
#3		-	#11		-	#19		DANT	TE " JT Ch
#4			#12		-	#20			<u>1811</u>
#5			#13		-	#21			
#6			#14		-	#22		DANT OUTP PATC	TE ^e NUT CH
#7			#15			#23			
#8			#16			#24		CLEAR	ALL

支持新型HY128-MD卡

此音频接口卡传送和接收最多128输入/128输出MADI信号。此卡备有2组光纤和同轴接口, 支持冗余连接。

可将其插入DSP引擎或I/O机架的HY插槽使用。 (DSP-R10: HY插槽3/4、CSD-R7: HY插槽2/3, RPio622/222: HY插槽2)与Dante卡相同。

SYSTEM CONFIG弹出窗口

当HY128-MD卡插入DSP引擎的HY SLOT 3时,显示此画面。画面包含下列项目:

1 REDUNDANCY MODE

可以在两种冗余组合中选择其一。

• MODE 1 同时使用光纤和同轴连接以维持冗余。

• MODE 2

使用两组光纤或两组同轴连接以维持冗余。

2 INPUT PRIORITY

可以指定冗余对中具有优先级的输入信号。

• PRI1

如果选择MODE1时,则OPTICAL1和OPTICAL2的信号具有优先级。 如果选择MODE2时,则OPTICAL1和COAXIAL1的信号具有优先级。

• PRI2

如果选择MODE1时,则COAXIAL1和COAXIAL2的信号具有优先级。如果选择MODE2时,则OPTICAL2和COAXIAL2的信号具有优先级。

③ SPLIT按钮

指定是否拆分输入信号并发送到输出接口。信号将发送到相同类型的输出接口。

• ON

拆分输入信号并发送到输出接口。

• OFF

来自安装卡的输入信号不被拆分直接输出。

④ INPUT SRC按钮

MADI输入信号的SRC打开或关闭。

5 SRC CLOCK按钮

当SRC打开时,可以选择输入信号时钟。

• MADI IN

选择MADI IN时钟作为SRC输入时钟。

• WCLK IN

选择WCLK IN FOR SRC时钟作为SRC输入时钟。

🜀 Fs指示灯

显示输入信号是48 kHz还是44.1 kHz。如果未输入有效MADI信号,指示灯都不亮。

⑦ RATE按钮

可选择以1Fs、2Fs或4Fs处理MADI输入信号。

• 1Fs

44.1 kHz/48 kHz, 最多64个通道

• 2Fs

88.2 kHz/96 kHz, 最多32个通道

• 4Fs

176.4 kHz/192 kHz, 最多16个通道

8 FRAME指示灯

显示输入信号的帧格式。如果未输入有效MADI信号,指示灯都不亮。

OHANNEL FORMAT指示灯

显示输入信号的通道格式。如果未输入有效MADI信号,指示灯都不亮。

10 OUTPUT SRC按钮

MADI输出信号的SRC打开或关闭。

① SRC CLOCK按钮

当SRC打开时,可以选择输出信号时钟。

• MADI IN

输出信号将使用相应MADI IN接口输入的时钟。

•WCLK IN 输出信号将使用在WCLK IN FOR SRC接口输入的时钟。

OUTPUT FRAME按钮

可选择输出信号的帧格式。

• SAME AS INPUT

输出信号将使用与MADI IN信号相同的格式。如果未输入有效MADI信号,将输出48 k 帧格式的信号。

• 96k

将输出96 k帧格式的信号。

• 48k

将输出48 k帧格式的信号。

13 OUTPUT CHANNEL FORMAT 按钮

可选择输出信号的通道格式。

SAME AS INPUT

输出信号的数量将与MADI IN信号的数量相同。如果未输入有效MADI信号,将输出 64通道格式的信号。

• 64

将输出64通道信号。

• 56

将输出56通道信号。

■ 关于HY128-MD卡的SOFT CTRL (软件控制)开关

如果开关①设为ON (默认设置),可以使用控制面板查看和修改参数设置。如果开关① 设为OFF,参数设置将由卡的DIP开关设置修复。有关更多信息,请参见"HY128-MD使用 说明书"。画面上的参数将变灰,您将无法通过控制面板修改设置。

MIX SEND COPY

如果要复制输出通道的混音参数,全新的简单复制发送功能可复制该通道的SENDS参数作为选项。

您可以在以下通道组合间使用MIX SEND COPY功能。

- 在MIX通道之间
- 在MATRIX通道之间
- 在STEREO通道之间

CH COPY弹出窗口

如果WITH SENDS按钮打开,将复制以下SENDS参数。

- 如果选中MIX通道:
- 如果选中MATRIX通道:

Pre/Post Pre Point Post Point Level Pan On Follow On Follow Fader Follow DCA

• 如果选中STEREO通道:

To Stereo A To Stereo B

注

- 在以下条件下, WITH SENDS按钮将变灰并禁用。
- 复制源或粘贴目标为环绕总线、降混总线或减混总线。
- 复制源和粘贴目标使用不同类型的总线(VARI/FIX)。

加载期间的附加选项

在加载工程文件时可以选择是否加载Dante音频网络设置。

LOAD SELECT画面

LOAD SELECT V0.6.		×
ALL SCENE IN	IPUT / PLUG-IN / NAME / OVERLAY SETUP	
WITH DANTE SETUP		
TOTAL LIBRARY USAGE	CANCEL LOAD	

① WITH DANTE SETUP按钮

打开此按钮以使用包含在加载文件内的Dante设置。

注

- 即使在加载Dante音频网络设置后, Dante Controller ID也不会改变。例如,如果ID从另一个号码更改为ID # 1,则整个系统的Dante设置将根据相应控制面板上的DANTE SETUP弹出窗口设置进行重新配置。为了避免这种情况, ID不会改变。
- •所有Dante设置将保存在一个文件中,不带任何保存选项。

显示DSP引擎之间的跳线冲突

假设一个DSP引擎已跳线到TWINLANe网络的一个输出端口,如果试图将另一个DSP引擎 跳线到同一输出端口,那么正在操作的控制面板会出现确认对话框,询问是否由第二个 DSP引擎跳线,以"盗取"输出端口。

同时,在与输出端口断开的控制面板上会显示一条信息,通知您跳线已改变("被盗")。

例如,如果尝试将多个DSP引擎跳线到TWINLANe网络I/O机架的相同输出端口,输出端口将由最后跳线的DSP引擎"盗取"。在这种情况下,将显示上述消息。

■ 更改跳线时的确认对话框

此对话框仅在PREFERENCES弹出画面的STEAL按钮打开时出现。

PREFERENCES				×		
SURFACE SURFACE SCREEN SETTINGS1 SETTINGS2 SETTINGS	MISC					
SCREEN OPTIONS	CONFIRMAT	CONFIRMATION MESSAGES ERROR MESSAGES				
GAINS SHOWN ON OVERVIEW SCREEN						
BAY L GAIN GAIN		ON	DIGITAL I/O	ON		
BAY C ANALOG DIGITAL GAIN GAIN	UPDATE	ON	MIDI VO	ON		
BAY R ANALOG DIGITAL GAIN GAIN	RECALL	ON	DANTE ALERT	ON		
PARAMETERS SHOWN ON SENDS ON FADER SCREEN						
FADER SEND SEND LEVEL PAN LEVEL		ON				
		1				

① STEAL按钮

■ 关于更改跳线的信息

■ 跳线画面

OUTPUT跳线画面

1 TWINLANe网络(主/次)分配画面

对于未分配给TWINLANe网络的输出通道的跳线编号显示为红色。(左半部分代表 主; 右半部分代表次。)

2 不完全跳线画面

如果代表分配的目标端口编号的矩形指示灯以黄色显示,则表示该端口可用,但端口跳线尚未激活(未激活)。若要激活,必须删除跳线,然后再次创建跳线。 如果代表分配的目标端口编号的矩形指示灯以红色显示,则表示该端口目前正从另一 个DSP引擎或设备进行跳线(已使用)。或者,端口可能不可用(不可用),可用端 口的数量因卡的设置而受到限制。请注意,删除跳线可能会无意中删除不同引擎正在 使用的其他跳线。

注

如果发生跳线冲突,将禁用I/O机架的PORT IDENTIFY功能。在这种情况下,以下信息将在画面底部 以黄色显示。

"PORT IDENTIFY not available! This channel is not currently patched to an Output Port." (PORT IDENTIFY不可用!此通道当前未跳线到输出端口。)

扩展SENDS ON FADER模式功能

■ 关于SEND SEL-CUE链接

在SENDS ON FADER模式下,当切换主母线时,相应地切换提示。现在可以打开或关闭此功能。

PREFERENCES弹出画面

1 [SEND SEL].>[CUE] LINK按钮

■ 关于SENDS ON FADER弹出窗口

如果按住[SHIFT]键并按下[SENDS ON FADER]键进入SENDS ON FADER,可以调节发送电平而无需打开SENDS ON FADER弹出窗口。

其他CUE监听源

CUE A、CUE B和TALKBACK2已添加为可分配给MONITOR SOURCE DEFINE按钮的监听源。(TALKBACK2是CONSOLE ID设置为"2"的控制面板的对讲信号。)

这样,可以混音并监听CUEA、CUEB、TALKBACK1或TALKBACK2以及其他监听源。如果使用IEM或对讲话筒(表演者与工程师之间交流),更为便利。

MONITOR SOURCE SELECT弹出窗口

MONITOR SOURCE SELECT											
INPUT	OUT	PUT		DIRECT INPUT					SET E	BY SEL	CLEAR ALL
MX 1	MX 2	мх з	MX 4	MX 5	MX 6	MX 7	MX 8	мх 9	MX 10	MX 11	MX 12
MX 1	MX 1	МХ 3	MX 4	MX 5	MX 6	MX 7	MX 8	МХ 9	MX10	MX11	MX12
MX 13	MX 14	MX 15	MX 16	MX 17	MX 18	MX 19	MX 20	MX 21	MX 22	MX 23	MX 24
MX13	MX14	MX15	MX16	MX17	MX18	MX19	MX20	MX21	MX22	MX23	MX24
MX 25	MX 26	MX 27	MX 28	MX 29	MX 30	MX 31	MX 32	MX 33	MX 34	MX 35	MX 36
MX25	MX26	MX27	MX28	MX29	MX30	MX31	MX32	MX33	MX34	MX35	MX36
MX 37	MX 38	MX 39	MX 40	MX 41	MX 42	MX 43	MX 44	MX 45	MX 46	MX 47	MX 48
MX37	MX38	MX39	MX40	MX41	MX42	MX43	MX44	MX45	MX46	MX47	MX48
MX 49	MX 50	MX 51	MX 52	MX 53	MX 54	MX 55	мх 56	MX 57	MX 58	MX 59	MX 60
MX49	MX50	MX51	MX52	MX53	MX54	MX55	МХ56	MX57	MX58	MX59	MX60
MX 61	MX 62	MX 63	MX 64	MX 65	MX 66	MX 67	мх 68	мх 69	MX 70	MX 71	MX 72
MX61	MX62	MX63	MX64	MX65	MX66	MX67	МХ68	МХ69	MX70	MX71	MX72
	67					TAU				CUE	
STAL STA	STA R ST A	STB L ST B	STB R ST B			TALKBACK 1	TALKBACK 2	CUE AL	CUE AR		CUE BR CUE B
				_							
MTA	LUT 2	MT 1	MTA	MT 6	MTC		MT 0	LUT 9	MT 10	MT 44	MT 42
MT 1	MT 1	MT 3	MT 4	MT 5	MT 6	MT 7	MT 8	MT 9	MT10	MT11	MT12
MT 13	MT 14	MT 15	мт 16	MT 17	MT 18	MT 19	мт 20	MT 21	MT 22	MT 23	MT 24
MT13	MT14	MT15	MT16	MT 17	MT18	MT19	MT20	MT21	MT 22	MT23	MT 24
MT 25	мт 26	MT 27	MT 28	мт 29	мт зо	MT 31	мт 32	мт 33	MT 34	мт 35	мт 36
MT25	МТ26	MT27	MT28	MT29	МТЗО	MT31	МТ32	МТ 33	MT 34	MT35	МТ36

注

如果选择CUE作为监听源,我们建议您关闭CUE INTERRUPT按钮,以使监听源信号不会因CUE操作而中断。

PHONES设置的新CUE INTERRUPT按钮使您可以关闭INTERRUPT。您还可以将此按钮功能分配到USER DEFINED键。

PHONES弹出窗口

PHONES					×
		РНО	NES A		
CUE INTERRUPT	PHONES POINT MONITOR POST DELAY CUE POST DELAY	CENTER CH ON	INSERT BLANK ON	PHONES LEVEL LINK	
CUE INTERRUPT	PHONES POINT MONITOR POST DELAY CUE POST DELAY	CENTER CH	INSERT BLANK	PHONES LEVEL LINK	

镜像运行检查功能

新的镜像运行检查功能可让您检查DSP镜像是否正常运行。 您可以在2个DSP引擎处于镜像配置时检查运行情况。 由于此功能几乎暂停DSP引擎的运行,您可以在系统设置时使用此功能。

检查示例

假设DSP A和DSP B处于镜像配置,您可以使用DSP A的镜像运行检查功能检查DSP B (处于待机状态)是否能在DSP A发生故障时自动接管。

■ 启动镜像检查功能

1. 按下使用中DSP引擎的前面板的[MENU]键。

2. 使用[▲]/[▼]键选择"Mirr Chk"。

注

如果DSP引擎的Unit ID不支持镜像检查功能,则不会出现"Mirr Chk"。

3. 按住[ENTER]键。

Press & Hold [ENTER] to Mirr Chk

4. 当出现"DONE"时,您可以检查确认DSP镜像运行。

■ 退出镜像检查功能

关闭2个DSP引擎的电源,然后再次打开。

如果在镜像发生后2个DSP引擎都设置为字时钟主机,则必须从一个字时钟主机删除一个设备。由于无法从控制面板执行此操作,必须从DSP引擎的前面板执行此操作。

注

即使DSP B接管发生故障的DSP A, DSP B也不会接管DSP A的字时钟主机设置,除非关闭DSP A的 电源。

除非将使用中DSP从B更改为A,否则DSP B将保持激活状态。如果关闭和打开2个DSP引擎的电源,则DSP A变为激活状态。此时请注意,除非先保存数据,否则DSP B上的数据将丢失。

Yamaha Pro Audio global website https://www.yamaha.com/proaudio/

Yamaha Downloads https://download.yamaha.com/

> Manual Development Group © 2018 Yamaha Corporation

> > Published 06/2018 CS-A0